前言: OCR文字识别在目前有着比较好的应用,也出现了很多的文字识别软件,但软件是面向用户的。对于我们技术人员来说,有时难免需要在计算机视觉任务中加入文字识别,如车牌号识别,票据识别等,因此软件对我们是没用的,我们需要自己实现文字识别。 在文字识别方面,主要有两款主流的开源框架Tesseract和EasyOCR。本文讨论了 Tesseract 和 EasyOCR 使用 Python API 之间的主要区别,包括安装、使用示例、准确率和推理速度方面的对比。 使用示例Tesseract 安装:
使用示例:
EasyOCR 安装:
使用示例
注:easyocr还会输出文字在图片中的坐标。
准确率在参考链接[2]中进行了一项实验,使用1000张含字母的图片和1000张含数字的图片分别使用Tesseract和EasyOCR进行测试。 含字母的输入图像如下图所示:
含数字的输入图像如下图所示:
经过测试得出下面两个开源框架的准确率对比
此外,它们在识别某些字符时存在完全不同的问题。例如,Tesseract 倾向于将诸如 29977.23 之类的东西识别为 2997.23,或者将carrier 识别为 cartier。另一方面,EasyOCR 更有可能将 94268.1 识别为 94268,或者advances 识别为 atvances。这两个单词识别的举例表明这两个框架对单个字母的识别倾向。 推理速度
在速度方面,Tesseract 在 CPU 上的表现优于 EasyOCR,而 EasyOCR 在 GPU 上的表现更好。 结论 Tesseract 在字母识别方面表现更好,而 EasyOCR 在数字方面表现更好。如果图片包含大量字母,可以考虑 Tesseract。此外,EasyOCR 的输出是小写的。如果大写对处理很重要,还应该使用 Tesseract。另一方面,如果图片中包含大量数字,建议 EasyOCR。 参考链接 https://blog.csdn.net/fatesunlove/article/details/107691665 https://medium.com/swlh/ocr-engine-comparison-tesseract-vs-easyocr-729be893d3ae (wxkang) |